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Abstract

This paper investigates an adaptive event-triggered communication scheme (AETCS) for a class of networked
Takagi-Sugeno (T-S) fuzzy control systems. The threshold of event-triggering condition has great influence on the
maximum allowable number of successive packet losses. Different from the conventional method, the threshold,
in this study, is dependent on a novel adaptive law which can be achieved on-line rather than a predefined constant,
since the threshold with fixed value is hard to suit the variation of the system. The stability and stabilization
criteria are derived by using a new Lyapunov function. Finally, an example is provided to demonstrate the design
method.

Key words: Adaptive event-triggered communication scheme; Networked control system; Takagi-Sugeno (T-S)
fuzzy model.

1. Introduction

Recently, much attention has been paid to the networked control systems (NCSs) where
the control loops are closed through a communication network due to the advantages of its
low cost, easy maintenance, high flexibility, simple installation and maintenance[1–6]. Many
applications, for example, mobile sensor networks[7], intelligent transportation systems[8],
remote surgery[9] and theoretic results[2, 3, 10–12] are reported to cope with the NCSs. Notice
that the aforementioned results are based on a periodic execution of control actions. The signal
transmission period is pre-set under a worst operation condition while analyzing the stability
of the system, which may lead to a conservativeness in the sense of resource usage , such as
sampling rate, CPU time. These problem might be concealed by utilizing a better hardware,
however, from the perspective of energy conservation, communication capacity and cost, on
implementations over wireless sensor, such as CAN (1 MB/s), Zigbee (250 Kb/s) and some
battery-powered wireless networks, the limitations of these communication medium should no
longer be neglected.

As an alternative of the periodic time-triggered control, event-triggered control schemes
have attracted much attention to mitigate the hardware requirement by reducing the “unnec-
essary” data transmission while guaranteeing the desired levels of control performance in the
context of sensor/actuator networks. Compared with the time-triggered control, the tasks are
triggered by a sequence of well-designed events rather than periodic time instants with the
elapse of time, that is, the data before being releasing into the network are screened by a device
which decides whether or not to send the sampling data over the network. A large amount of
“unnecessary” data are dropped out actively under this selection mechanism, thus the network
resource can be saved to allocate other more important task. In [13], the authors presented
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a decentralized event-triggered implementation, over sensor/actuator networks, of centralized
nonlinear controllers. Wang and Lemmon proposed a method for distributed event-triggered
control under an assumption that the control system was composed of weakly coupled sub-
systems in [14]. In [15], the authors developed an event-triggered transmission policy based
on a state-estimation. The event-triggered algorithms are designed based on the variation of
the Lyapunov functions and a selection of the input variables to be updated [16]. However, a
common feature of the aforementioned results on the event-triggering scheme (ETS) is that the
controller gains should be known in prior. To overcome this drawback, co-designing methods
are wildly investigated for both the feedback control gain of the system and the parameters of
the event-triggering condition recently, for example, [17–20], and references therein.

The threshold of event-triggering condition may greatly affect the execution of control task.
However, the threshold, in the conventional design, being a pre-set constant, is hard to adapt
the variation of the system, that is, the event-triggered parameter to be designed should adapt
to the external disturbance. Therefore, an on-line optimization is required to for achieving
the event-triggering parameter, which is a big challenging issue. To the best of the authors
knowledge, up to now, there are few results in the open literature on achieving the threshold of
the event-triggering condition for nonlinear systems, which motivates the current work.

Notice that many industrial systems exhibit serious non-linear characteristics, which make
the analysis and synthesis for the system more difficult, especially for NCSs. It has been
proved that Takagi-Sugeno (T-S) fuzzy models can approximate any continuous functions by
a set of conventional linear systems and described by a family of IF-THEN rules [21–23].
Consequently, the study on nonlinear NCSs has received much attentions by using the method
of T-S fuzzy model[24–26]. In this paper, we deal with the problem of an adaptive event-
triggered fuzzy control for T-S fuzzy model based nonlinear NCSs. The contributions of the
paper are as follows. Firstly, a new adaptive data transmitting scheme is developed. The
burden of network-bandwidth is mitigated after introducing of the adaptive data-transmitting
generator (ADTG), by which the data with less contribution to the control performance or less
relative variation from the latest released data are discarded. Secondly, a new adaptive law
is put forward to achieve the threshold of event triggering condition on-line. The threshold
of the triggering condition becomes an optimal result rather than an arbitrary one with the
conventional event-triggered method. Thirdly, To ensure the closed-loop system asymptotic
stability under the proposed AETCS, a new Lyapunov-Krasovskii functional is developed and a
sufficient condition is given to co-design the parameters of the AETCS and the fuzzy controller.

The remainder of this paper is organized as follows. Section 2 describes the framework
of AETCS and the modelling process of the closed-loop NCS under AETCS. In section 3,
the stability and stabilization criteria are established with consideration of AETCS. Section 4
gives an example to show the effectiveness of the proposed scheme. The paper is concluded in
Section 5.

Notation: R
n denotes the n-dimensional Euclidean space, Rn×m is the set of real n × m

matrices. For any positive integer r, Sr � {1, 2, · · · , r}. I is the identity matrix of appropriate
dimensions. δi � [0, 0, · · · , 0︸������︷︷������︸

i−1

, I, 0, · · · , 0]n×7n. ‖·‖ stands for the Euclidean vector norm or

spectral norm as appropriate. The notation X > 0 (respectively, X < 0), for X ∈ R
n×n means

that the matrix X is a real symmetric positive definite (respectively, negative definite). The
asterisk ∗ in a matrix is used to denote term that is induced by symmetry, Matrices, if they are
not explicitly stated , are assumed to have compatible dimensions.
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2. Problem statement and an AETCS

In this section, we will study the networked control design for a nonlinear system by using
a new adaptive event-triggering scheme. Under this scheme, the data with less contribution
to the control performance or less relative variation will be discarded to mitigate the network-
bandwidth. Then a unified model of networked nonlinear system is presented based on the
AETCS.

2.1. The system description
Consider the following nonlinear plant

ẋ(t) = f (x(t)) + g(x(t))u(t) (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is the input vector; f (x), g(x) is continuous
functions of x, and f (0) = 0, g(0) = 0.

By the fuzzy modelling approach [27–29], the system (1) can be represented or approx-
imated in a compact (bound closed) set by a T-S fuzzy model, in which the i-th rule of the
model is of the form

Plant Rule i :

If θ1(t) is Wi
1 and · · · and θg(t) is Wi

g Then

ẋ(t) = Aix(t) + Biu(t) (2)

where Wi
j(i ∈ Sr, j ∈ Sg) is the fuzzy set, which is characterized by the membership functions

Wi
j(θ j(t)); r and g are the number of fuzzy rules and fuzzy sets, θ(t) = [θ1(t), θ2(t), · · · , θg(t)]T

is the premise variables; Ai and Bi are constant matrices with compatible dimensions.
By using the center-average defuzzifier, product inference and singleton fuzzifier, the global

dynamics of T-S fuzzy system (2) can be expressed as

ẋ(t) =
r∑

i=1

hi(θ(t)) [Aix(t) + Biu(t)] (3)

where

hi(θ(t)) =
ωi(θ(t))∑r
i=1 ωi(θ(t))

, ωi(θ(t)) =
g∏

j=1

Wi
j(θ j(t)) (4)

For ∀i ∈ {1, 2, · · · , r}, hi(θ(t)) has the properties of hi(θ(t)) ≥ 0 and
∑r

i=1 hi(θ(t)) = 1. For
notational simplicity, hi(θ(t)) is written as hi in the next presentation.

2.2. An adaptive event-triggered communication scheme
The proposed AETCS-based nonlinear networked control system, shown in Fig. 1, con-

sists of a nonlinear continuous controlled plant, a sensor, a sampler, a fuzzy controller and
a zero-order holder (ZOH), an actuator and an adaptive data-transmitting generator (ADTG).
From the figure, one can see that the proposed framework inherits the traditional NCSs except
that the ADTG is introduced before the sampled data accessing the network. However, the
AETG is a crucial part of the control system due to the selection of control information greatly
depending on it.
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Fuzzy controller
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Figure 1: A diagram of AETCS for a nonlinear NCS

Based on the previous work on modelling NCSs, such as [11, 30], we consider the fol-
lowing fuzzy controller under assumptions that: 1) the sensors are clock-driven, controllers
and actuators are event-driven; 2) the sampling data are hold by ZOH before the new data are
updated; and 3) the data are transmitted over the network by a single packet in every control
period h and there are no packet losses.

u(t+) =
r∑

j=1

hjKjx(rsh), t ∈ χrs (5)

where χrs � [rsh + τrs , rs+1h + τrs+1 ), Kj ( j ∈ Sr) is a controller gain to be designed, h is a
sampling period, rsh is a releasing instant broadcasted by ADTG, τrs is a network-transmitted
delay at rsh.

Fig. 2 gives an example to show the time sequence of the sampling and releasing instant
under the AETCS. In Fig. 2, the data are sampled periodically at instant ikh, (ikh ∈ Ω1 �
{0h, 1h, 2h, 3h, 4h, 5h, · · · }), and the data at releasing instant rsh, (rsh ∈ Ω2 � {r0h = 0h, r1h =
4h, r2h = 6h · · · }) are selected to release into the network and the others are discarded. The
control input of the fuzzy system is kept by ZOH during the period χ0 = [0h+τ0, 4h+τ4), χ1 =

[4h + τ4, 6h + τ6), . . . .

Remark 1. From the above analysis, one can obviously see that Ω2 is a subset of Ω1 and∑∞
s=0 χrs = [t0,∞). Further more, the releasing period Δrsh = rs+1h − rsh is larger than the

sampling period h due to the effect of AETCS, which leads to a larger average releasing period

h̄r =
∑N

s=1 Δrsh

N than h.

ADTG in this study is responsible for deciding wether or not to send the updated sampling
data, that is, a decision should be made at every updated instant of the sampler. To expound the
mechanism of AETCS clearly , we divide the releasing interval χrs into several sampling-like
subsets artificially as χl

rs
= [rsh+ lh−h+τl−1

rs
, rsh+ lh+τlrs

) for l = 1, 2, · · · , l̄, where 0τlrs
takes

value of τrs and τrs+1 for l ≤ l̄ − 1 and l = l̄, respectively (see Fig. 2). Obviously, χrs = ∪l̄
l=1χ

l
rs

.
Define e(t) = x(rsh + lh) − x(rsh) and Ω3 � {l|eT (t)Ξe(t) − �(t)xT (rsh + lh)Ξx(rsh + lh) ≤ 0}

4



sampling instant arriving instantreleasing instant

Sensor side

Actuator side

Figure 2: An example of timing diagram for an event-triggered implementation

for t ∈ χrs , then the number of divided subinterval l̄ is decided by

l̄ =

⎧⎪⎪⎨⎪⎪⎩1 Ω3 = φ

1 +max{l|l ∈ Ω3} others
(6)

for t ∈ χrs , Ξ > 0 is a weight of triggering condition to be designed, and �(t) is a variable of
threshold satisfying the following adaptive event-triggering law

�̇(t) =
θ

�(t)

(
1
�(t)
− ϑ

)
eT (t)Ξe(t) (7)

with 0 < �(t) ≤ 1 and θ > 0, ϑ > 0.

Remark 2. Eq. (6) gives the next releasing instant rs+1h = rsh+ l̄h, that is, l̄−1 is the maximum
allowable number of successive packet losses. It means that an event will be triggered by
ADTG when the updated sampled-data violates the triggering condition

eT (t)Ξe(t) − �(t)xT (rsh + lh)Ξx(rsh + lh) ≤ 0 (8)

otherwise, the sampling data will be discarded. Thus, the number of packet-transmission over
the communication network are greatly reduced.

Remark 3. From (7), one can know that if the system tends to be stable at the equilibrium,
the error e(t) = x(rsh + lh) − x(rsh) accordingly approaches to zero, i.e. �̇(t) → 0, then the
threshold converges to a certain value unless there is a new external disturbance destabilizing
the system. That is the threshold should be convergent if and only if the system is stable.

Remark 4. If one sets θ = 0 in (7), then the triggering condition in (8) degrades into the
conventional ones, such as [17, 18], with the following format

eT (t)Ξe(t) − �̄xT (rsh + lh)Ξx(rsh + lh) ≤ 0 (9)

where 0 < �̄ ≤ 1 is a predefined constant. Specially, the above scheme approaches to the
time-triggered ones if �̄→ 0+.

Remark 5. From (8), one can see that the threshold variable �(t) has a major effect on the
number of the packets transmitted over the network in a certain period. �(t) in (7) is an optimal
result regulated by the adaptive law (7) on-line, while the threshold �̄ in (9) is a preset constant,
by which it can not be accommodated with the varying external disturbance.
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2.3. AETCS-based NCSs modelling
Define η(t) = t − (rsh + lh) for t ∈ χl

rs
. From the definition of e(t), we have

x(rsh) = x(t − η(t)) − e(t) (10)

where ηm = min{τk} ≤ η(t) ≤ h +max{τk} = ηM .
Combining (3), (5) and (10) leads to a closed-loop NCS model

ẋ(t) =
r∑

i=1

r∑
j=1

hih j

[
Aix(t) − BiKje(t) + BiKjx(t − η(t))

]
(11)

Additionally, the adaptive event-triggered condition (8) is equivalent to

eT (t)Ξe(t) − �(t)xT (t − η(t))Ξx(t − η(t)) ≤ 0 (12)

For the sake of simplicity, we denote ζ(t) = [xT (t) xT (t − ηm) xT (t − η(t)) xT (t − ηM) eT (t)
1
η(t)

∫ t

t−η(t) xT (s)ds 1
η̄−η(t)

∫ t−η(t)
t−ηM

xT (s)ds]T . Then the system (11) can be rewritten as

ẋ(t) =
r∑

i=1

r∑
j=1

hih jAi jζ(t) (13)

where Ai j =
[
Ai 0 BiKj 0 −BiKj 0 0

]
.

3. Stability analysis and controller design

In this section, we are in position to develop an approach of stability analysis and co-
design for fuzzy controller, the weight of event-triggering condition and the threshold of event-
triggering condition to the networked T-S fuzzy system (13). Before we give the Theorems,
the following lemma are first introduced, which is helpful for deriving our main results.

Lemma 1. [31] For a given matrix R > 0, the following inequality holds for all continuously
differentiable function ω in [a, b]→ R

n :
�R(ω̇) ≥ 1

b−a (ω(b) − ω(a))T R(ω(b) − ω(a)) + 3
b−aΩ̃

T RΩ̃,

where �R(ω) =
∫ b

a
ωT (u)Rω(u)du and Ω̃ = ω(b) + ω(a) − 2

b−a

∫ b

a
ω(u)du.

Lemma 2. [32] For given positive integers n,m,a scalar α in the interval (0, 1), a given n × n-
matrix R > 0, two matrices W1 and W2 in R

n×m. Define, for all vector ξ in R
m, the function

Θ(α,U) given by: Θ(α,R) = 1
α
ξTWT

1 RW1ξ +
1

1−αξ
TWT

2 RW2ξ

Then, if there exists a matrix U in R
n×n such that

(
R U
∗ R

)
> 0,then the following inequality

holds

minΘ(α,R) ≥
(

W1ξ
W2ξ

)T (
R U
∗ R

) (
W1ξ
W2ξ

)
.

Lemma 3. [32] For any constant matrix R ∈ R
n×n, R > 0, scalars τ̄1 ≤ τ(t) ≤ τ̄2, and vector

function ẋ : [−τ̄2,−τ̄1]→ R
n such that the following integration is well defined, it holds that

− (τ̄2 − τ̄1)
∫ t−τ̄1

t−τ̄2
ẋT (s)Rẋ(s)ds ≤

[
x(t − τ̄1)
x(t − τ̄2)

]T [ −R ∗
R −R

] [
x(t − τ̄1)
x(t − τ̄2)

]
(14)
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Theorem 1. For given positive scalars ηm, ηM, ϑ and matrix Kj ( j ∈ Sr), if there exist real
matrices P > 0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,Ξ > 0 with appropriate dimensions satisfying
the following LMI conditions:[

Ωii ∗
RAii −R

]
< 0 i ∈ Sr (15)

[
Ωi j + Ω ji ∗

R(Ai j +A ji) −R
]
< 0 i < j (i, j ∈ Sr) (16)

[
R̄2 ∗
U R̄2

]
> 0 (17)

where

Ωi j = δ
T
1 PAi j +AT

i jPδ1 + diag{Q1 + Q2,−Q1,Ξ,−Q2,−ϑΞ, 0, 0}

−
[
W1

W2

]T [
R̄ ∗
U R̄

] [
W1

W2

]
+

[
δ1
δ2

]T [−R1 ∗
R1 −R1

] [
δ1
δ2

]

Ai j =
[
Ai 0 BiKj 0 −BiKj 0 0

]
W1 =

[
δ1 − δ3

δ1 + δ3 − 2δ6

]
,W2 =

[
δ3 − δ4

δ3 + δ4 − 2δ7

]
,

R̄2 = diag{R2, 3R2},R = ηmR1 + ηMR2

Then, the closed-loop system (11) is asymptotically stable under the proposed event-triggering
condition (8) with adaptive law (7).

Proof: Consider the following Lyapunov functional candidate

V(t) = V1(t) + V2(t) + V3(t) + V4(t)

V1(t) = xT (t)Px(t)

V2(t) =
∫ t

t−ηm
xT (s)Q1x(s)ds +

∫ t

t−ηM

xT (s)Q2x(s)ds

V3(t) = ηm

∫ t

t−ηm

∫ t

s
ẋT (v)R1 ẋ(v)dvds + ηM

∫ t

t−ηM

∫ t

s
ẋT (v)R2 ẋ(v)dvds

V4(t) =
1
2
�2(t)

Since

−ηM

∫ t

t−ηM

ẋT (s)R2 ẋ(s)ds = −ηM

∫ t

t−η(t)
ẋT (s)R2 ẋ(s)ds − ηM

∫ t−η(t)

t−ηM

ẋT (s)R2 ẋ(s)ds

7



Then by using Lemma 1 and Lemma 2, we have

−ηM

∫ t

t−ηM

ẋT (s)R2 ẋ(s)ds ≤ − ηM

η(t)
ζT (t)(δ1 − δ3)T R2(δ1 − δ3)ζ(t)

− 3ηM

η(t)
ζT (t)(δ1 + δ3 − 2δ6)

T R2(δ1 + δ3 − 2δ6)ζ(t)

− ηM

ηM − η(t)ζ
T (t)(δ3 − δ4)T R2(δ3 − δ4)ζ(t)

− 3ηM

ηM − η(t)ζ
T (t)(δ3 + δ4 − 2δ7)

T R2(δ3 + δ4 − 2δ7)ζ(t)

= − ηM

η(t)
ζT (t)WT

1 R̄2W1ζ(t) − ηM

ηM − η(t)ζ
T (t)WT

2 R̄2W2ζ(t)

= −1
α
ζT (t)WT

1 R̄2W1ζ(t) − 1
1 − αζ

T (t)WT
2 R̄2W2ζ(t)

≤ −ζT (t)

[
W1

W2

]T [
R̄2 ∗
U R̄2

] [
W1

W2

]
ζ(t)

where 0 < α = η(t)
ηM
≤ 1.

Using Lemma 3, we obtain

V̇3(t) ≤ ẋT (t)(ηmR1 + ηMR2)ẋ(t) +

[
x(t)

x(t − ηm)

]T [−R1 R1

R1 −R1

] [
x(t)

x(t − ηm)

]

− ζT (t)

[
W1

W2

]T [
R̄2 ∗
U R̄2

] [
W1

W2

]
ζ(t) (18)

Recalling the adaptive law (7) and the triggering condition (12) follows

V̇4(t) = �(t)�̇(t)

=
1
�(t)

eT (t)Ξe(t) − ϑeT (t)Ξe(t)

≤ xT (t − η(t))Ξx(t − η(t)) − ϑeT (t)Ξe(t) (19)

Combining (18) and (19) yields

V̇(t) ≤
r∑

i=1

r∑
j=1

hih j

{
2xT (t)PAi jζ(t) + xT (t)(Q1 + Q2)x(t)

− xT (t − ηm)Q1x(t − ηm) − xT (t − ηM)Q2xT (t − ηM)

+ ζT (t)AT
i j(ηmR1 + ηMR2)Ai jζ(t) +

[
x(t)

x(t − ηm)

]T [−R1 R1

R1 −R1

] [
x(t)

x(t − ηm)

]

− ζT (t)

[
W1

W2

]T [
R̄2 ∗
U R̄2

] [
W1

W2

]
ζ(t)

+ xT (t − η(t))Ξx(t − η(t)) − ϑeT (t)Ξe(t)
}

=

r∑
i=1

r∑
j=1

hih jζ
T (t)

{
Ωi j +AT

i jRAi j

}
ζ(t)

8



=

r∑
i=1

h2
i ζ

T (t)
{
Ωii +AT

iiRAii

}
ζ(t)

+

r∑
i=1

r∑
i< j

hih jζ
T (t)

{
Ωi j + Ω ji + (AT

i j +AT
ji)R(Ai j +A ji)

}
ζ(t)

By using Schur complements, we can conclude that (15), (16) and (17) are sufficient con-
ditions to guarrentee V̇(t) < 0, which further implies the closed-loop system (11) is asymptot-
ically stable from Lyapunov stability theory. The proof is completed. �

Remark 6. θ in (8) to can be used to regulate the convergent rate of the threshold �(t). For
convenience, we let θ = 1 in Theorem 1 and the subsequent results.

As the statement in Remark 4, if we choose θ = 0 in (7), the proposed AETCS turns to be
a conventional event-triggered scheme with the format of (9). By using a similar method, we
can achieve the following corollary.

Corollary 1. For given positive scalars ηm, ηM , �̄ and matrix Kj ( j ∈ Sr), if there exist real
matrices P > 0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,Ξ > 0 with appropriate dimensions satisfying
the following LMI conditions:[

Ω̂ii ∗
RAii −R

]
< 0 i ∈ Sr (20)

[
Ω̂i j + Ω̂ ji ∗

R(Ai j +A ji) −R
]
< 0 i < j (i, j ∈ Sr) (21)

[
R̄2 ∗
U R̄2

]
> 0 (22)

where

Ω̂i j = δ
T
1 PAi j +AT

i jPδ1 + diag{Q1 + Q2,−Q1, �̄Ξ,−Q2,−Ξ, 0, 0}

−
[
W1

W2

]T [
R̄ ∗
U R̄

] [
W1

W2

]
+

[
δ1
δ2

]T [−R1 ∗
R1 −R1

] [
δ1
δ2

]

and the other parameters are defined in Theorem 1. Then the closed-loop system (11) with the
event-triggered scheme in (9) is asymptotically stable.

Next, based on Theorem 1, a sufficient condition for co-designing of the weight of event-
triggered condition Ξ and the controller gain K j ( j ∈ Sr) will be presented.

Theorem 2. For given positive scalars ηm, ηM , ϑ and μk (k = 1, 2), if there exist real matrices
X > 0, Q̄1 > 0, Q̄2 > 0, R̃1 > 0, R̃2 > 0, Ξ̄ and Yj ( j ∈ Sr) with appropriate dimensions
satisfying the following LMI conditions:

[
Ω̄ii ∗
Āii Ῡ1

]
< 0 i ∈ Sr (23)

[
Ω̄i j + Ω̄ ji ∗
Āi j + Ā ji Ῡ2

]
< 0 i < j (i, j ∈ Sr) (24)

[R2 ∗
Ū R2

]
> 0 (25)

9



where

Ω̄i j = δ
T
1 Āi j + ĀT

i jδ1 + diag{Q̄1 + Q̄2,−Q̄1, Ξ̄,−Q̄2,−ϑΞ̄, 0, 0}

−
[
W1

W2

]T [R2 ∗
Ū R2

] [
W1

W2

]
+

[
δ1
δ2

]T [−R̃1 ∗
R̃1 −R̃1

] [
δ1
δ2

]

Āi j =
[
AiX 0 BiYj 0 −BiYj 0 0

]
W1 =

[
δ1 − δ3

δ1 + δ3 − 2δ6

]
,W2 =

[
δ3 − δ4

δ3 + δ4 − 2δ7

]
,

R2 = diag{R̃2, 3R̃2}, Ῡk = −2μkX + μ
2
kR̃,

R̃ = ηmR̃1 + ηMR̃2

Then the closed-loop system (11) is asymptotically stable under the proposed event-triggering
condition (8). Moreover, the controller gain in (5) is given by Kj = YjX−1, and the adaptive
law of the AETCS can be achieved on-line by

�̇(t) =
1
�(t)

(
1
�(t)
− ϑ

)
eT (t)X−1Ξ̄X−1e(t) (26)

Proof: Pre- and post-multiplying (15) and (16) with diag{I, PR−1}, diag{I, PR−1} and theirs
transposes, we have [

Ωii ∗
PAii −PR−1P

]
< 0 i ∈ Sr (27)

[
Ωi j + Ω ji ∗

P(Ai j +A ji) −PR−1P

]
< 0 i < j ∈ Sr (28)

It is noted that

(μkR − P)R−1(μkR − P) ≥ 0 (29)

where μk (k = 1, 2) is a positive scalar. Then it is true that

− PR−1P ≤ −2μkP + μ
2
kR (30)

It follows that [
Ωii ∗

PAii −Υ1

]
< 0 i ∈ Sr (31)

[
Ωi j + Ω ji ∗

P(Ai j +A ji) −Υ2

]
< 0 i < j ∈ Sr (32)

where Υk = −2μkP + μ2
kR.

Define X = P−1, Q̄1 = XQ1X, Q̄2 = XQ2X, R̃1 = XR1X, R̃2 = XR2X, Ū = XUX, Y = KX,
J = diag{X, X, X, X, X, X, X}. It can obviously see that Eq. (31) and (32) are equivalent to Eq.
(15) and (16) by pre- and post-multiplying (31) and (32) with diag{J, X} and theirs transposes,
respectively. Similarly, we can conclude that (25) is equivalent to (17). This completes the
proof. �
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Remark 7. A cone complementary linearization (CCL) algorithm is an alternate algorithm to
deal with the non-convex problem [33]. Althouth CCL algorithm can get a less conservative
result than those based on the inequality (29), we need more auxiliary variables to solve LMIs.
If the nonlinear system with more T-S fuzzy rules and high dimension, the extra computa-
tion load is very significant. Therefore, the inequality (29) is used in this study to solve this
problem.

Similarly, the following results can be obtained if one uses the event triggering condition
with the format of (9).

Corollary 2. For given positive scalars ηm, ηM, �̄ and μk (k = 1, 2), if there exist real matrices
X > 0, Q̄1 > 0, Q̄2 > 0, R̃1 > 0, R̃2 > 0, Ξ̄ and Yj ( j ∈ Sr) with appropriate dimensions
satisfying the following LMI conditions:

[
Ω̃ii ∗
Āii Ῡ1

]
< 0 i ∈ Sr (33)

[
Ω̃i j + Ω̃ ji ∗
Āi j + Ā ji Ῡ2

]
< 0 i < j (i, j ∈ Sr) (34)

[R2 ∗
Ū R2

]
> 0 (35)

where

Ω̃i j = δ
T
1 Āi j + ĀT

i jδ1 + diag{Q̄1 + Q̄2,−Q̄1, �̄Ξ̄,−Q̄2,−Ξ̄, 0, 0}

−
[
W1

W2

]T [R2 ∗
Ū R2

] [
W1

W2

]
+

[
δ1
δ2

]T [−R̃1 ∗
R̃1 −R̃1

] [
δ1
δ2

]

and the others parameters are defined in Theorem 2. Then the closed-loop system (11) is
asymptotically stable under the event-triggering condition with the format of (9). Moreover,
the weight of event-triggered condition (9) is determined by Ξ = X−1Ξ̄X−1 and the controller
gain in (5) is given by Kj = YjX−1.

4. A numerical example

In this section, an example of networked control for an unstable batch reactor [34] is used
to demonstrate the effectiveness of the proposed approach.

Example 1. Consider the following nonlinear mass-spring system

ẋ1(t) = x2(t)

ẋ2(t) = −0.01x1(t) − 0.67x3
1(t) + u(t)

Choose fuzzy membership function as h1(t) = 1 − x2
1(t) and h2(t) = 1 − h1(t), where x1 ∈

[−1, 1]. The following fuzzy model is also used to model aforementioned nonlinear system:

R1 : If x1(t) is h1(t)

Then ẋ(t) = A1x(t) + B1u(t)

R2 : If x1(t) is h2(t)

Then ẋ(t) = A2x(t) + B2u(t)
11
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Figure 3: The state trajectories of x(t) under AETCS

where

A1 =

[
0 1
−0.01 0

]
, A2 =

[
0 1
−0.68 0

]
, B1 = B2 =

[
0
1

]

Assume ηm = 0.01 and ηM = 0.2 respectively. Using Theorem 2 with ϑ = 20, μk = 1 (k =
1, 2), we can obtain the feedback gain in (5) and the weight of event-triggering condition in (8)
are give by

K1 =
[
−0.2590 −0.9220

]
,K2 =

[
0.1528 −1.0964

]
(36)

Ξ =

[
2.4780 −2.1003
−2.1003 2.4347

]
, (37)

Set the sampling period h = 0.2s. Under the initial condition φT (t) = [−0.9 0.6], the
responses of the system with AETCS are shown in Fig. (3)- Fig. (6). The state trajectories
of the system, shown in Fig. 3, demonstrates the effectiveness of the proposed adaptive event-
triggered transmission strategy. The control input with the time sequences of the packets is
presented in Fig. 4, where the periodic sampling instant, the broadcast instant and the arriving
instant of the data at actuator side are depicted by “·”, “◦ ” and “∗”, respectively. From Fig. 4,
we can know that: 1) Some sampling data are discarded before accessing the network due to
the execution of ADTG; 2) The value of the released data transmitted over the network are kept
a constant in the time interval t ∈ χrs by ZOH; and 3) There exists a network-induced delay
from the broadcasting instant at sensor side to the arriving instant at actuator side. As can be
seen from Fig. 5 that the threshold of AETCS is regulated continually till the error reaches
to a stable state. In this case, the threshold �(t) converges to 0.0504 finally. Fig. 6 shows the
maximum number of successive packet losses, which further demonstrates the effect of the
adaptive event-triggered scheme on the network-transmitted mechanism.

To compare performance of the proposed AETCS with the conventional ETS, we choose
the threshold ρ̄ of ETS in (9) as 0.0504, which is a stable value of AETCS in the above case.
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Figure 4: The control input u(t) of the system with AETCS
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Figure 5: The threshold �(t) of the system with AETCS

By using Corollary 2, we can obtain the related parameters as follows

K1 =
[−0.2589 −0.8222

]
,K2 =

[
0.1531 −1.0967

]
(38)

Ξ =

[
48.8018 −41.3477
−41.3477 47.8804

]
, (39)

Fig. 7 and Fig 8 show the state trajectories of the system and the number of successive
packet losses under the ETS with the parameters in (38)-(39) and the same initial conditions
with AETCS above. From the state responses of the system in Fig. 3 and Fig. 7, one can
see that the state variation is bigger in the period of 0-8s than the one in the period of 8-12s.
Table 4 shows that the numble of packet-sampling (NPS) is 40 in the period of 0-8s under the
sampling period h = 0.2s; and the number of packet-loss (NPL) is 20 by using the proposed
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Figure 6: The maximum number of successive packet losses l̄ under AETCS

AETCS and 30 by using ETS. While 34 and 32 data-packets are discarded by using AETCS
and ETS in the period of 8-20s, respectively. In the period of 0-8s, 50% of sampling packets
are used to adapt with the variation of the system, which is 25% more than the one by using
ETS. To meet this requirement, the threshold is regulated continually during this period. A
better performance can be got by the proposed AETCS than the conventional ETS due to the
more “necessary” sampling data being transmitted over the network, which can be illustrated
by comparing Fig. 3 withFig. 7. During the period of 8-12s, the system approaches to steady
state, NPL is roughly same due to a nearly same threshold during this period.

Table 1: The packet-loss under AETCS and ETS

0-8s 8-20s
NPS 40 60

NPL
AETCS 20 34

ETS 30 32

5. Conclusion

In this paper, a novel adaptive event-triggered communication scheme is presented for a
class of networked T-S fuzzy systems. The threshold of the event-triggered condition can be
achieved by the proposed adaptive law on-line, rather than a preset constant in the conventional
event-triggered scheme. A new Lyapunov function is constructed tactfully with consideration
of the adaptive law and the stabilization criterion is derived in terms of matrix inequalities by
which the weight of the triggering condition and the feedback gain can be obtained simul-
taneously. Simulation results show that the network resource can be saved to allocate other
communication task by using the proposed AETCS.
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Figure 7: The state trajectories of x(t) of the system with ETS in (9)
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Figure 8: The maximum number of successive packet losses l̄ under ETS in (9)

15



6. Acknowledgement

This work was supported by the National Natural Science Foundation of China(Grant No.
61473156), Research Fund for the Doctoral Program of Higher Education of China (Grant No.
20133204120018) and the National Science Foundation for Post-doctoral Scientists of China
(Grant No. 2014M551487) and Jiangsu Post-doctor Grant(No. 1301009A).

References

[1] F. Yang, Z. Wang, Y. Hung, and M. Gani, “H∞ control for networked systems with random communication delays,” IEEE Transactions
on, Automatic Control, vol. 51, no. 3, pp. 511–518, 2006.

[2] D. Yue, Q.-L. Han, and J. Lam, “Network-based robust H∞ control of systems with uncertainty,” Automatica, vol. 41, no. 6, pp.
999–1007, 2005.

[3] X. Jia, D. Zhang, X. Hao, and N. Zheng, “Fuzzy Tracking Control for Nonlinear Networked Control Systems in T-S Fuzzy Model,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 4, pp. 1073–1079, 2009.

[4] F. Yang and Q.-L. Han, “H∞ control for networked systems with multiple packet dropouts,” Information Sciences, vol. 252, pp. 106–117,
2013.

[5] C. Peng, Q.-L. Han, and D. Yue, “Communication-delay-distribution-dependent decentralized control for large-scale systems with
ip-based communication networks,” IEEE Transactions on Control Systems Technology, vol. 21, no. 3, pp. 820–830, 2013.

[6] R. Lu, Y. Xu, A. Xue, and J. Zheng, “Networked control with state reset and quantized measurements: Observer-based case,” IEEE
Transactions on Industrial Electronics, vol. 60, no. 11, pp. 5206–5213, 2013.
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